Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.566
Filtrar
1.
Clin Appl Thromb Hemost ; 30: 10760296241249167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659339

RESUMO

Apixaban is a direct oral Xa inhibitor and is indicated for the treatment of venous thrombo-embolism (VTE) and prevention of stroke in atrial fibrillation (AF). Recently, a generic (ZyQuis, Zydus Lifesciences Limited, India) has received Food and Drug Administration approval. While bioequivalence has been demonstrated with Eliquis (Bristol-Myers Squibb/Pfizer, UK), it is necessary to monitor its effectiveness prior to acceptance in medical practice. This prospective study independently evaluated Apixaban (ZyQuis) at two accredited laboratories. Participants were converted from Warfarin or Rivaroxaban to Apixaban 5 mg bd for a duration of one month. Peak anti-Xa levels were measured 3-4 h post the morning dose. The samples were processed on the Atellica COAG 360 (Siemens Healthineers, Marburg, Germany) analyzers with a chromogenic anti-Xa assay (Innovance, reference interval 69-321 ng/mL). There were 26 participants; 5 men, 21 women; mean ± standard deviation age of 46 ± 12 years. Indications for anticoagulation included: VTE (88.5%) and AF (11.5%). 69.2% of the participants had at least one comorbidity. 96.2% of the anti-Xa levels were within the laboratory's 95% reference interval. Mean anti-Xa activity was 191 ± 69 ng/mL and 186 ± 68 ng/mL measured at respective laboratories. Mean differences in anti-Xa measurements represented by Bland-Altman statistics were small (bias of -2.6%, 95% confidence interval -1.11 to -4.09) and a strong correlation was observed on Deming regression analysis (0.995). Apixaban (ZyQuis) was effective for the management of VTE and AF as evidenced by anti-Xa activity.


Assuntos
Fibrilação Atrial , Inibidores do Fator Xa , Pirazóis , Piridonas , Tromboembolia Venosa , Humanos , Piridonas/uso terapêutico , Piridonas/administração & dosagem , Piridonas/farmacologia , Piridonas/farmacocinética , Pirazóis/uso terapêutico , Pirazóis/farmacocinética , Pirazóis/administração & dosagem , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/complicações , Fibrilação Atrial/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Inibidores do Fator Xa/uso terapêutico , Inibidores do Fator Xa/farmacocinética , Inibidores do Fator Xa/farmacologia , Tromboembolia Venosa/tratamento farmacológico , Tromboembolia Venosa/prevenção & controle , Estudos Prospectivos , Adulto , Monitoramento de Medicamentos/métodos
2.
Cancer Chemother Pharmacol ; 93(5): 509-517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520556

RESUMO

Tazemetostat, a novel oral selective inhibitor of enhancer of zeste homolog 2 (EZH2), was approved by the Food and Drug Administration (FDA) in 2020 for use in patients with advanced epithelioid sarcoma or relapsed/refractory (R/R) EZH2-mutated follicular lymphoma. These indications were approved by the FDA trough accelerated approval based on objective response rate and duration of response that resulted from phase 2 clinical trials. Tazemetostat competes with S-adenosylmethionine (SAM) cofactor to inhibit EZH2, reducing the levels of trimethylated lysine 27 of histone 3 (H3K27me3), considered as pharmacodynamic marker. Tazemetostat is orally bioavailable, characterized by rapid absorption and dose-proportional exposure, which is not influenced by coadministration with food or gastric acid reducing agents. It highly distributes in tissues, but with limited access to central nervous system. Tazemetostat is metabolized by CYP3A in the liver to 3 major inactive metabolites (M1, M3, and M5), has a short half-life and is mainly excreted in feces. Drug-drug interactions were shown with moderate CYP3A inhibitors as fluconazole, leading the FDA to recommend a 50% dose reduction, while studies investigating coadministration of tazemetostat with strong inhibitors/inducers are ongoing. No dosage modifications are recommended based on renal or hepatic dysfunctions. Overall, tazemetostat is the first-in-class EZH2 inhibitor approved by the FDA for cancer treatment. Current clinical studies are evaluating combination therapies in patients with several malignancies.


Assuntos
Benzamidas , Compostos de Bifenilo , Interações Medicamentosas , Morfolinas , Humanos , Morfolinas/farmacocinética , Morfolinas/farmacologia , Morfolinas/administração & dosagem , Compostos de Bifenilo/farmacocinética , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/administração & dosagem , Piridonas/farmacocinética , Piridonas/farmacologia , Piridonas/administração & dosagem , Piridonas/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Sulfonamidas/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Animais , Organofosfatos/farmacocinética , Organofosfatos/farmacologia
3.
Genes Chromosomes Cancer ; 63(2): e23222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340027

RESUMO

INTRODUCTION: Pancreatic acinar cell carcinomas are rare malignant neoplasms. High-quality evidence about the best treatment strategy is lacking. We present the case of a 52-year-old male with a BRAFV600E -mutated PACC who experienced a complete remission after chemotherapy with BRAF-/MEK-inhibitors. CASE: The patient presented with upper abdomen pain, night sweat, and weight loss. CT scan showed a pancreatic tumor extending from the pancreas head to body. Histological workup identified an acinar cell carcinoma. As the tumor was inoperable, chemotherapy with FOFIRNIOX was initiated and initially showed a slight regression of disease. The regimen had to be discontinued due to severe side effects. Molecular analysis identified a BRAFV600E mutation, so the patient was started on BRAF- and MEK-inhibitors (dabrafenib/trametinib). After 16 months, CT scans showed a near complete remission with a markedly improved overall health. DISCUSSION: Studies suggest that up to one-fourth of PACCs carry a BRAF mutation and might therefore be susceptible to a BRAF-/MEK-inhibitor therapy. This offers a new therapeutic pathway to treat this rare but malignant neoplasm.


Assuntos
Carcinoma de Células Acinares , Neoplasias Pancreáticas , Humanos , Masculino , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Acinares/tratamento farmacológico , Carcinoma de Células Acinares/genética , Carcinoma de Células Acinares/induzido quimicamente , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Piridonas/farmacologia , Pirimidinonas/farmacologia
4.
Chem Biodivers ; 21(3): e202301389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299764

RESUMO

Pirfenidone, initially indicated for lung fibrosis, has gone beyond its original purpose, and shown promise in eye care. This detailed review tracks its evolution from lung treatment to aiding eye healing as evidenced by published literature. Pirfenidone's multifaceted attributes extend to mitigating corneal fibrosis, inflammation, and trauma. Through rigorous investigations, its efficacy emerges in diabetic retinopathy, macular degeneration, and postoperative glaucoma interventions. As an unheralded protagonist, pirfenidone reshapes ocular care paradigms, inviting renewed research opportunities.


Assuntos
Piridonas , Cicatrização , Piridonas/farmacologia , Piridonas/uso terapêutico
5.
J Med Chem ; 67(4): 2570-2583, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38301207

RESUMO

Influenza viruses (IFVs) have caused several pandemics and have claimed numerous lives since their first record in the early 20th century. While the outbreak of COVID-19 seemed to expel influenza from the sight of people for a short period of time, it is not surprising that it will recirculate around the globe after the coronavirus has mutated into a less fatal variant. Baloxavir marboxil (1), the prodrug of baloxavir (2) and a cap-dependent endonuclease (CEN) inhibitor, were approved by the FDA for the first treatment in almost 20 years. Despite their high antiviral potency, drug-resistant variants have been observed in clinical trials. Herein, we report a novel CEN inhibitor 8 with a delicately designed macrocyclic scaffold that exhibits a significantly smaller shift of inhibitory activity toward baloxavir-resistant variants.


Assuntos
Dibenzotiepinas , Influenza Humana , Morfolinas , Tiepinas , Humanos , Influenza Humana/tratamento farmacológico , Oxazinas/farmacologia , Piridinas/farmacologia , Endonucleases , Antivirais/farmacologia , Antivirais/uso terapêutico , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Piridonas/farmacologia , Piridonas/uso terapêutico , Triazinas/farmacologia , Triazinas/uso terapêutico
6.
ACS Infect Dis ; 10(3): 917-927, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38346249

RESUMO

HIV-1 integrase (IN) is an important molecular target for the development of anti-AIDS drugs. A recently FDA-approved second-generation integrase strand transfer inhibitor (INSTI) cabotegravir (CAB, 2021) is being marketed for use in long-duration antiviral formulations. However, missed doses during extended therapy can potentially result in persistent low levels of CAB that could select for resistant mutant forms of IN, leading to virological failure. We report a series of N-substituted bicyclic carbamoyl pyridones (BiCAPs) that are simplified analogs of CAB. Several of these potently inhibit wild-type HIV-1 in single-round infection assays in cultured cells and retain high inhibitory potencies against a panel of viral constructs carrying resistant mutant forms of IN. Our lead compound, 7c, proved to be more potent than CAB against the therapeutically important resistant double mutants E138K/Q148K (>12-fold relative to CAB) and G140S/Q148R (>36-fold relative to CAB). A significant number of the BiCAPs also potently inhibit the drug-resistant IN mutant R263K, which has proven to be problematic for the FDA-approved second-generation INSTIs.


Assuntos
Inibidores de Integrase de HIV , Integrase de HIV , Raltegravir Potássico/farmacologia , Inibidores de Integrase de HIV/farmacologia , Piridonas/farmacologia , Integrase de HIV/genética
7.
Bioorg Med Chem Lett ; 101: 129655, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350529

RESUMO

The NaV1.8 channel, mainly found in the peripheral nervous system, is recognized as one of the key factors in chronic pain. The molecule VX-150 was initially promising in targeting this channel, but the phase II trials of VX-150 did not show expected pain relief results. By analyzing the interaction mode of VX-150 and NaV1.8, we developed two series with a total of 19 molecules and examined their binding affinity to NaV1.8 in vitro and analgesic effect in vivo. One compound, named 2j, stood out with notable activity against the NaV1.8 channel and showed effective pain relief in models of chronic inflammatory pain and neuropathic pain. Our research points to 2j as a strong contender for developing safer pain-relief treatments.


Assuntos
Amidas , Neuralgia , Compostos Organotiofosforados , Humanos , Amidas/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.7 , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Piridonas/química , Piridonas/farmacologia
8.
J Med Chem ; 67(4): 2712-2731, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38295759

RESUMO

The bromodomain and extra-terminal domain (BET) proteins are epigenetic readers, regulating transcription via two highly homologous tandem bromodomains, BD1 and BD2. Clinical development of nonselective pan-BD BET inhibitors has been challenging, partly due to dose-limiting side effects such as thrombocytopenia. This has prompted the push for domain-selective BET inhibitors to achieve a more favorable therapeutic window. We report a structure-guided drug design campaign that led to the development of a potent BD1-selective BET inhibitor, 33 (XL-126), with a Kd of 8.9 nM and 185-fold BD1/BD2 selectivity. The high selectivity was first assayed by SPR, validated by a secondary time-resolved fluorescence energy transfer assay, and further corroborated by BROMOscan (∼57-373 fold selectivity). The cocrystal of 33 with BRD4 BD1 and BD2 demonstrates the source of selectivity: repulsion with His437 and lost binding with the leucine clamp. Notably, the BD1 selectivity of BET inhibitor 33 leads to both the preservation of platelets and potent anti-inflammatory efficacy.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Domínios Proteicos , Anti-Inflamatórios/farmacologia , Piridonas/farmacologia , Proteínas de Ciclo Celular/metabolismo
9.
Eur J Med Chem ; 265: 116107, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38171147

RESUMO

Unique benzopyridone cyanoacetates (BCs) as new type of promising broad-spectrum antibacterial candidates were discovered with large potential to combat the lethal multidrug-resistant bacterial infections. Many prepared BCs showed broad antibacterial spectrum with low MIC values against the tested strains. Some highly active BCs exhibited rapid sterilization capacity, low resistant trend and good predictive pharmacokinetic properties. Furthermore, the highly active sodium BCs (NaBCs) displayed low hemolysis and cytotoxicity, and especially octyl NaBC 5g also showed in vivo potent anti-infective potential and appreciable pharmacokinetic profiles. A series of preliminary mechanistic explorations indicated that these active BCs could effectively eliminate bacterial biofilm and destroy membrane integrity, thus resulting in the leakage of bacterial cytoplasm. Moreover, their unique structures might further bind to intracellular DNA, DNA gyrase and topoisomerase IV through various direct noncovalent interactions to hinder bacterial reproduction. Meanwhile, the active BCs also induced bacterial oxidative stress and metabolic disturbance, thereby accelerating bacterial apoptosis. These results provided a bright hope for benzopyridone cyanoacetates as potential novel multitargeting broad-spectrum antibacterial candidates to conquer drug resistance.


Assuntos
Antibacterianos , Inibidores da Topoisomerase II , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , DNA Girase/metabolismo , DNA Topoisomerase IV , Testes de Sensibilidade Microbiana , Inibidores da Topoisomerase II/farmacologia , Piridonas/química , Piridonas/farmacologia , Nitrilas/química , Nitrilas/farmacologia
10.
Theranostics ; 14(2): 593-607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169595

RESUMO

Rationale: The response rate to the MEK inhibitor trametinib in BRAF-mutated melanoma patients is less than 30%, and drug resistance develops rapidly, but the mechanism is still unclear. Yes1-associated transcriptional regulator (YAP1) is highly expressed in melanoma and may be related to MEK inhibitor resistance. The purpose of this study was to investigate the mechanism of YAP1 in MEK inhibitor resistance in melanoma and to screen YAP1 inhibitors to further determine whether YAP1 inhibition reverses MEK inhibitor resistance. Methods: On the one hand, we analyzed paired melanoma and adjacent tissue samples using RNA-seq and found that the Hippo-YAP1 signaling pathway was the top upregulated pathway. On the other hand, we evaluated the transcriptomes of melanoma samples from patients before and after trametinib treatment and investigated the correlation between YAP1 expression and trametinib resistance. Then, we screened for inhibitors that repress YAP1 expression and investigated the mechanisms. Finally, we investigated the antitumor effect of YAP1 inhibition combined with MEK inhibition both in vitro and in vivo. Results: We found that YAP1 expression levels upon trametinib treatment in melanoma patients were correlated with resistance to trametinib. YAP1 was translocated into the nucleus after trametinib treatment in melanoma cells, which could render resistance to MEK inhibition. Thus, we screened for inhibitors that repress YAP1 expression and identified multiple bromodomain and extra-terminal (BET) inhibitors, including NHWD-870, as hits. BET inhibition repressed YAP1 expression by decreasing BRD4 binding to the YAP1 promoter. Consistently, YAP1 overexpression was sufficient to reverse the proliferation defect caused by BRD4 depletion. In addition, the BET inhibitor NHWD-870 acted synergistically with trametinib to suppress melanoma growth in vitro and in vivo. Conclusions: We identified a new vulnerability for MEK inhibitor-resistant melanomas, which activated Hippo pathway due to elevated YAP1 activity. Inhibition of BRD4 using BET inhibitors suppressed YAP1 expression and led to blunted melanoma growth when combined with treatment with the MEK inhibitor trametinib.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Proteínas Nucleares , Fatores de Transcrição/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/farmacologia , Piridonas/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular
11.
J Med Chem ; 67(2): 1168-1183, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38227770

RESUMO

Tropomyosin receptor kinase (TRK) fusion, an oncogenic form of kinase with pan-tumor occurrence, is a clinically validated important antitumor target. In this study, we screened our in-house kinase inhibitor library against TRK and identified a promising hit compound 4 with a novel pyridin-2(1H)-one scaffold. Through a combination of structure-based drug design and structure-activity relationship (SAR) study, compound 14q was identified as a potent TRK inhibitor with good kinase selectivity. It also blocked cellular TRK signaling, thereby inhibiting TRK-dependent cell viability. Additionally, 14q displayed acceptable pharmacokinetic properties with 37.8% oral bioavailability in mice. Strong in vivo tumor growth inhibition of 14q was observed in subcutaneous M091 and KM12 tumor xenograft models with TRK fusion, causing significant tumor inhibition or even complete tumor regression.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Receptor trkA , Transdução de Sinais , Relação Estrutura-Atividade , Piridonas/química , Piridonas/farmacologia
12.
J Med Chem ; 67(2): 1513-1532, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38175809

RESUMO

Bromodomain-selective BET inhibition has emerged as a promising strategy to improve the safety profiles of pan-BET inhibitors. Herein, we report the discovery of potent phenoxyaryl pyridones as highly BD2-selective BET inhibitors. Compound 23 (IC50 = 2.9 nM) exhibited a comparable BRD4 BD2 inhibitory activity relative to 10 (IC50 = 1.0 nM) and remarkably improved selectivity over BRD4 BD1 (23: 2583-fold; 10: 344-fold). This lead compound significantly inhibited the proliferation of acute myeloid leukemia (AML) cell lines through induction of G0/G1 arrest and apoptosis in vitro. Excellent in vivo antitumor efficacy with 23 was achieved in an MV;411 mouse xenograft model. Pleasingly, compound 23 (hERG IC50 > 30 µM) mitigated the inhibition of the human ether-à-go-go-related gene (hERG) ion channel compared with 10 (hERG IC50 = 2.8 µM). This work provides a promising BD2-selective lead for the development of more effective and safe BET inhibitors as anticancer agents.


Assuntos
Leucemia Mieloide Aguda , Fatores de Transcrição , Humanos , Camundongos , Animais , Proteínas Nucleares , Piridonas/farmacologia , Domínios Proteicos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas de Ciclo Celular , Proteínas que Contêm Bromodomínio
13.
Discov Med ; 36(180): 22-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273744

RESUMO

Idiopathic pulmonary fibrosis is a progressive and incurable lung disease characterized by collagen deposition, alveolar inflammation, fibroblast proliferation, and the destruction of lung tissue structures. It is a rare yet severe condition with a high mortality rate, typically leading to death within 3-5 years of diagnosis. The clinical presentation of idiopathic pulmonary fibrosis (IPF) involves a gradual and substantial loss of lung function, ultimately resulting in respiratory failure. Despite more than half a century of intensive research, the origin of IPF remains a mystery. Despite its unknown etiology, several genetic and non-genetic factors have been linked to IPF. Recent significant advancements have been made in the field of IPF diagnosis and treatment. Two oral small-molecule drugs, pirfenidone and nintedanib, have recently gained approval for the treatment of IPF. Pirfenidone exhibits antifibrotic, antioxidant, and anti-inflammatory properties, while nintedanib is a tyrosine kinase inhibitor with selectivity for vascular endothelial growth factor (VEGF) receptors, prostaglandin F (PGF) receptors, and fibroblast growth factor (FGF) receptors. Both of these compounds are capable of slowing down the progression of the disease with an acceptable safety profile. This review provides a brief introduction, historical background, epidemiological insights, and an exploration of various environmental risk factors that may influence the lung microenvironment and contribute to the advancement of IPF. The review also delves into the diagnosis, signaling pathways, and ongoing clinical trials worldwide. A thorough review of the literature was conducted using PubMed and Google Scholar to gather information on various aspects of IPF. Numerous potential drugs are currently under investigation in clinical trials, and the completion of this process is crucial to the ultimate goal of finding a cure for IPF patients. The investigation of the role of genes, surfactant proteins, infectious agents, biomarkers, and epigenetic changes holds the promise of offering earlier and more accurate understanding and diagnosis of IPF. This information could be instrumental in the development of new therapeutic approaches for treating IPF and is expected to be of great interest to researchers.


Assuntos
Fibrose Pulmonar Idiopática , Fator A de Crescimento do Endotélio Vascular , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/metabolismo , Inflamação/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/uso terapêutico , Piridonas/farmacologia
14.
Bioorg Chem ; 143: 107018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071874

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal, chronic and progressive lung disease that threaten public health like many cancers. In this study, targeting the significant driving factor, inflammatory response, of the IPF, several conjugates of pirfenidone (PFD) with non-steroidal anti-inflammatory drugs (NSAIDs), along with their derivatives, were designed and synthesized to enhance the anti-IPF potency of PFD. Among these compounds, the (S)-ibuprofen-PFD conjugate 5b exhibited the most potent anti-proliferation activity against NIH3T3 cells, demonstrating up to a 343-fold improvement compared to PFD (IC50 = 0.04 mM vs IC50 = 13.72 mM). Notably, 5b exhibited superior activity in inhibiting the migration of macrophages induced by TGF-ß compared to PFD. Additionally, 5b demonstrated significant suppression of TGF-ß-induced migration of NIH3T3 cells and induction of apoptosis in NIH3T3 cells. Mechanistic studies revealed that 5b reduced the expression of collagen I and α-SMA by inhibiting the TGF-ß/SMAD3 pathway. In a bleomycin-induced pulmonary fibrosis model, treatment with 5b (40 mg/kg/day, orally) exhibited a more pronounced effect on reducing the degree of histopathological changes in lung tissue and alleviating collagen deposition compared to PFD (100 mg/kg/day, orally). Moreover, 5b could block the expression of collagen I, α-SMA, fibronectin, and pro-inflammatory factors (IL-6, IFN-γ, and TNF-α) compared to PFD, while demonstrating low toxicity in vivo. These preliminary results indicated that the hybridization of PFD with NSAIDs represented an effective modification approach to improve the anti-IPF potency of PFD. Consequently, 5b emerged as a promising candidate for the further development of new anti-IPF agents.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Camundongos , Humanos , Células NIH 3T3 , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Piridonas/farmacologia , Piridonas/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Colágeno/metabolismo , Colágeno/uso terapêutico , Colágeno Tipo I/metabolismo , Fator de Crescimento Transformador beta/metabolismo
15.
Eur J Pediatr ; 183(2): 543-555, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37999764

RESUMO

To evaluate milrinone's impact on pediatric cardiac function, focusing on its specific role as an inotrope and lusitrope, while considering its systemic and pulmonary vasodilatory effects. Search of PubMed, EMBASE, and the Cochrane Library up to August 2023. We included all studies that evaluated milrinone in children under 18 years old in neonatal, pediatric, or cardiac intensive care units. We excluded case reports, studies that did not provide tabular information on milrinone's outcomes, and studies focused on non-intensive care populations. We extracted data on the research design, objectives, study sample, and results of each study, including the impact of milrinone and any associated factors. We screened a total of 9423 abstracts and 41 studies were ultimately included. Milrinone significantly improved left ventricular ejection fraction (WMD 3.41 [95% CI 0.61 - 6.21]), left ventricle shortening fraction (WMD 4.25 [95% CI 3.43 - 5.08]), cardiac index (WMD 0.50 [95% CI 0.32 to 0.68]), left ventricle output (WMD 55.81 [95% CI 4.91 to 106.72]), serum lactate (WMD -0.59 [95% CI -1.15 to -0.02]), and stroke volume index (WMD 2.95 [95% CI 0.09 - 5.82]). However, milrinone was not associated with improvements in ventricular myocardial performance index (WMD -0.01 [95% CI -0.06 to 0.04]) and ventricular longitudinal strain (WMD -2.14 [95% CI -4.56 to 0.28]). Furthermore, milrinone was not associated with isovolumetric relaxation time reduction (WMD -8.87 [95% CI -21.40 to 3.66]). CONCLUSION: Our meta-analysis suggests potential clinical benefits of milrinone by improving cardiac function, likely driven by its systemic vasodilatory effects. However, questions arise about its inotropic influence and the presence of a lusitropic effect. Moreover, milrinone's pulmonary vasodilatory effect appears relatively weaker compared to its systemic actions. Further research is needed to elucidate milrinone's precise mechanisms and refine its clinical applications in pediatric practice. WHAT IS KNOWN: • Milrinone is a phosphodiesterase III inhibitor that has been used to treat a variety of pediatric and neonatal conditions. • Milrinone is believed to exert its therapeutic effects by enhancing cardiac contractility and promoting vascular relaxation. WHAT IS NEW: • Milrinone may not have a significant inotropic effect. • Milrinone's pulmonary vasodilatory effect is less robust than its systemic vasodilatory effect.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Recém-Nascido , Humanos , Criança , Adolescente , Milrinona/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Volume Sistólico , Piridonas/farmacologia , Piridonas/uso terapêutico , Função Ventricular Esquerda , Insuficiência Cardíaca/tratamento farmacológico , Cardiotônicos/uso terapêutico , Cardiotônicos/farmacologia
16.
ACS Nano ; 17(24): 24654-24667, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38054429

RESUMO

Ongoing research is actively exploring the use of immune checkpoint inhibitors to treat solid tumors by inhibiting the PD-1/PD-L1 axis and reactivating the function of cytotoxic T effector cells. Many types of solid tumors, however, are characterized by a dense and stiff stroma and are difficult to treat. Mechanotherapeutics have formed a recent class of drugs that aim to restore biomechanical abnormalities of the tumor microenvironment, related to increased stiffness and hypo-perfusion. Here, we have developed a polymeric formulation containing pirfenidone, which has been successful in restoring the tumor microenvironment in breast tumors and sarcomas. We found that the micellar formulation can induce similar mechanotherapeutic effects to mouse models of 4T1 and E0771 triple negative breast tumors and MCA205 fibrosarcoma tumors but with a dose 100-fold lower than that of the free pirfenidone. Importantly, a combination of pirfenidone-loaded micelles with immune checkpoint inhibition significantly delayed primary tumor growth, leading to a significant improvement in overall survival and in a complete cure for the E0771 tumor model. Furthermore, the combination treatment increased CD4+ and CD8+ T cell infiltration and suppressed myeloid-derived suppressor cells, creating favorable immunostimulatory conditions, which led to immunological memory. Ultrasound shear wave elastography (SWE) was able to monitor changes in tumor stiffness during treatment, suggesting optimal treatment conditions. Micellar encapsulation is a promising strategy for mechanotherapeutics, and imaging methods, such as SWE, can assist their clinical translation.


Assuntos
Imunoterapia , Micelas , Camundongos , Animais , Piridonas/farmacologia , Piridonas/uso terapêutico , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Microambiente Tumoral
17.
Oral Oncol ; 147: 106625, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948895

RESUMO

OBJECTIVES: To describe the first reported use of neoadjuvant dabrafenib and trametinib specifically to permit organ conservation surgery in locally advanced recurrent differentiated thyroid carcinoma. PATIENTS AND METHODS: A patient presented with locally recurrent, radioiodide-resistant DTC with a BRAF V600E mutation invading the laryngotrachea. Definitive treatment would require a total laryngectomy. She was offered neoadjuvant dabrafenib and trametinib prior to surgery. RESULTS: A significant radiographic response permitted partial laryngectomy, enabling preservation of voice, early resumption of oral feeding, and avoidance of permanent tracheostomy. At 9 months, she remained free of disease. CONCLUSION: Neoadjuvant tyrosine kinase inhibitor treatment prior to definitive surgery for locally-invasive recurrent DTC is a potential approach that may limit the degree of surgery and associated morbidity.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Neoplasias da Glândula Tireoide , Feminino , Humanos , Câncer Papilífero da Tireoide/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Terapia Neoadjuvante , Preservação de Órgãos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Piridonas/farmacologia , Piridonas/uso terapêutico , Mutação , Protocolos de Quimioterapia Combinada Antineoplásica
18.
Biomaterials ; 303: 122404, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992600

RESUMO

Idiopathic pulmonary fibrosis (IPF) stands as a highly heterogeneous and deadly lung disease, yet the available treatment options remain limited. Combining myofibroblast inhibition with ROS modulation in damaged AECs offers a comprehensive strategy to halt IPF progression, but delivering drugs separately to these cell types is challenging. Inspired by the successful application of pulmonary surfactant (PS) replacement therapy in lung disease treatment, we have developed PS nano-biomimetic liposomes (PSBs) to utilize its natural transport pathway for targeting AECs while reducing lung tissue clearance. In this collaborative pulmonary drug delivery system, PSBs composed of DPPC/POPG/DPPG/CHO (20:9:5:4) were formulated for inhalation. These PSBs loaded with ROS-scavenger astaxanthin (AST) and anti-fibrosis drug pirfenidone (PFD) were aerosolized for precise quantification and mimicking patient inhalation. Through aerosol inhalation, the lipid membrane of PSBs gradually fused with natural PS, enabling AST delivery to AECs by hitchhiking with PS circulation. Simultaneously, PFD was released within the PS barrier, effectively penetrating lung tissue to exert therapeutic effects. In vivo results have shown that PSBs offer numerous therapeutic advantages in mice with IPF, particularly in terms of lung function recovery. This approach addresses the challenges of drug delivery to specific lung cells and offers potential benefits for IPF patients.


Assuntos
Fibrose Pulmonar Idiopática , Surfactantes Pulmonares , Humanos , Camundongos , Animais , Surfactantes Pulmonares/uso terapêutico , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacologia , Lipossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Biomimética , Aerossóis e Gotículas Respiratórios , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Piridonas/farmacologia
19.
Sci Rep ; 13(1): 19238, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935732

RESUMO

Chronic kidney disease (CKD) is a comorbidity in idiopathic pulmonary fibrosis (IPF), and managing IPF with CKD is challenging due to limited options for antifibrotic therapy. The aim of this study was to examine the prevalence of CKD and prescription status of pirfenidone in IPF patients and to analyze its impact on mortality. Data from the Korean National Health Insurance Service (NHIS) database between October 2015 and September 2021 were used. IPF and CKD were defined based on both International Classification of Diseases 10th Revision (ICD-10) codes and Rare Intractable Disease (RID) codes. The risk of mortality was assessed based on accompanying CKD with or without antifibrotic therapy. Among 5038 patients with IPF, 8.4% had comorbid CKD and 83.3% with CKD did not receive renal replacement therapy (RRT). Patients with IPF and CKD were older, predominantly male, and had more frequent comorbidities such as cardiovascular disease and diabetes mellitus than subjects without CKD. Pirfenidone was prescribed to 105 (24.6%) of 426 CKD patients, and 89.5% of them did not receive RRT. Pirfenidone was also prescribed to 775 (16.8%) of 4612 IPF patients without CKD. Significant difference was not found in all-cause mortality between the IPF patients with or without CKD regardless of pirfenidone treatment. The use of antifibrotics in IPF patients with CKD is limited due to CKD severity; however, evidence is lacking. Mortality did not increase with accompanying CKD regardless of antifibrotic use. Further research on IPF and CKD is needed.


Assuntos
Fibrose Pulmonar Idiopática , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/epidemiologia , Piridonas/farmacologia , Comorbidade , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/induzido quimicamente , Resultado do Tratamento
20.
Biochem Biophys Res Commun ; 681: 242-248, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788591

RESUMO

Fluorofenidone (AKF-PD) is a novel pyridone derivative that inhibits fibrosis and inflammation in many tissues. Accordingly, it has been effective in disease models, such as liver failure, nephropathy, and pulmonary fibrosis. However, its potential role in cardiac physiology and pathology has yet to be elucidated. Thus, this paper investigated a possible functional impact of AKF-PD on adult rat cardiac myocytes. Cells were kept in culture for 1-2 days under either control conditions or the presence of AKF-PD (500 µM). They were next examined concerning cell contractility, intracellular Ca2+ homeostasis, and activity of voltage-gated Ca2+ channels. Remarkably, AKF-PD enhanced the percentage of cell shortening and rates of both contraction and relaxation by nearly 100%. A stimulus in Ca2+-induced Ca2+ release (CICR) most likely accounts for these effects because AKF-PD also increased the magnitude of electrically evoked Ca2+ transients. Of note, the compound did not alter the peak value of caffeine-elicited Ca2+ transients, indicating stimulation of CICR at constant sarcoplasmic reticulum Ca2+ load. Since CICR is triggered by the entry of Ca2+ through CaV1.2 (ICa), a possible effect on these Ca2+ channels was also investigated. AKF-PD increased the magnitude of both ICa and maximal macroscopic Ca2+ conductance (Gmax) by about 50%. However, no differences were found in either voltage dependence of inactivation or the amount of maximal immobilization-resistant charge movement (Qmax). Thus, the effect on ICa could be explained by a higher channel's open probability (Po) rather than a greater abundance of channel proteins. Additional data indicate that AKF-PD reduces the rate of Ca2+ extrusion in the presence of caffeine, suggesting inhibition of the Na/Ca exchanger. Overall, these results indicate that AKF-PD upregulates the Po of CaV1.2 and then sequentially enhances ICa, CICR, and contractility. Therefore, the novel compound is also a candidate to be tested in cardiac disease models.


Assuntos
Cafeína , Miócitos Cardíacos , Animais , Ratos , Cafeína/farmacologia , Miócitos Cardíacos/metabolismo , Piridonas/farmacologia , Contração Miocárdica , Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...